
Transactions of the Korean Nuclear Society Autumn Meeting

Pyeongchang, Korea, October 30-31, 2014

Programming Guidelines for FBD Programs in Reactor Protection System Software

Sejin Jung
a
, Dong-Ah Lee

a
, Eui-Sub Kim

a
, Junbeom Yoo

a
 and Jang-Soo Lee

b

a
Division of Computer Science and Engineering College of Information and Communication,

Konkuk University Seoul, Republic of Korea
b
Man-Machine Interface System team Korea Atomic Energy Research Institute, Daejeon, Republic of Korea

Corresponding author: jsjj0728@konkuk.ac.kr

1. Introduction

Safety of software in critical systems, such as nuclear

power plants and vehicles, is one of the most important

properties, because loss of the safety results in damages

to the environment or human. Properties of

programming languages, such as reliability, traceability,

etc., play important roles in software development to

improve safety. Several researches are proposed

guidelines about programming to increase the

dependability of software which is developed for safety

critical systems [1,2]. Misra-c is a widely accepted

programming guidelines for the C language especially

in the sector of vehicle industry [3,4]. NUREG/CR-

6463 helps engineers in nuclear industry develop

software in nuclear power plant systems more

dependably [5,6].

FBD (Function Block Diagram), which is one of

programming languages defined in IEC 61131-3

standard [7], is often used for software development of

PLC (programmable logic controllers) in nuclear power

plants. Software development for critical systems using

FBD needs strict guidelines, because FBD is a general

language and has easily mistakable elements. There are

researches about guidelines for IEC 61131-3

programming languages [8,9,10]. They, however, do

not specify details about how to use languages.

This paper proposes new guidelines for the FBD

based on NUREG/CR-6463. It not only provides

elements usages as other guidelines for text languages,

but also includes elements‟ placement because FBD is a

graphical language. The paper introduces a CASE

(Computer-Aided Software Engineering) tool to check

FBD programs with the new guidelines and shows

availability with a case study using a FBD program in a

reactor protection system.

The paper is organized as follows. Section 2

describes the related work and Section 3 explains the

new guidelines. Section 4 describes FBDChecker which

is an automatic guideline checker, Section 5 explains a

case study and finally Section 6 explains conclusion and

future work.

2. Related work

2.1 Function Block Diagram

FBD is a graphic language based on blocks defined

IEC 61131-3 standard programming languages [7]. The

standard defines 10 categories and we present 6 out of

the 10 in <Fig. 1>. The behavior of the blocks is

intuitive as their names imply: ADD, AND, etc.

Developers wire blocks from inputs to outputs in a

manner similar to a circuit diagram makes to implement

programs

Fig 1.Examples of Function Blocks

2.2 Safe programming

Most errors and failures of software are results from

human errors. Various standards restrict usages of

languages to support software development for safety

critical systems. For example, IEC 61508-3 has design

and coding standards which are applied various fields

[2]; Misra-c is a coding standard for software

development in automotive industry [3,4]; DO-178B

[11] is for airborne systems, and many other standards

exist for other industry also.

NUREG/CR-6463 provides programming guidelines

to develop software in nuclear domain. It supports not

only IEC 61131-3 programming languages but also Ada,

C/C++, Pascal, PL/M also [5,6].

PLCopen, as an organization active in Industrial

Control, released technical specification about Safety

Software for IEC 61131-3 standard [10]. This standard

provides guidelines, and basic specifications of function

blocks for implementation and use in safety-related

environments. It helps a developers reduce effort to

fulfill basic safety requirements like a distinction

between safety and non-safety function, use of data type

and so on.

3. Guidelines for FBD programming

NUREG/CR-6463 has 4 aspects—reliability, robust-

ness, traceability, and maintainability—for safe

programming. Guidelines in the reliability are to

improve dependability and to guarantee correctness

about simulation or action of a program. Guidelines in

the maintainability increase readability and decrease

Transactions of the Korean Nuclear Society Autumn Meeting

Pyeongchang, Korea, October 30-31, 2014

complexity. The robustness in the guidelines is for

exception handling, and so on. Finally the traceability

is „use of built-in function,‟ „use of compiled library‟

[5,6].

This paper proposes the new guidelines, which refine

the NUREG/CR-6463 and suggest new guides for the

FBD languages; they cover important properties for

software safety which former guidelines do not

include. The new guidelines consist of two properties,

reliability and maintainability, because only the two of

4 properties in NUREG/CR-6463 are suitable for the

FBD languages. Properties of robustness and

traceability in NUREG/CR-6463 are excluded the new

guidelines, because „exception handling‟ and „use of

compiled library‟ are not acceptable in FBD languages.

3.1 Guidelines for reliability

Guidelines for the reliability consist of 4 categories

as follows:

- Eliminating incorrect control flow

- Eliminating incorrect function uses

- Eliminating incorrect variable uses

- Eliminating explicit/implicit type conversion

Eliminating incorrect control flow If FBD

programs have incorrect control flows, developers

cannot predict its result. FBD programs, which

developers are not able to predict, are not acceptable in

safety critical systems. Because of unpredictable FBD

programs are possible to make errors or not.

The category of eliminating incorrect control flow

consists of rules to obtain dependability by modifying

incorrect program flow. Rules are „does not use

incorrect explicit execution order‟, „eliminating input

port without connection any input‟, „decreased using

jump‟ and so on. If order in a program is incorrect, it is

possible to make incorrect data flow and make incorrect

output result.

Fig 2. An example of incorrect execution order

For example, if a function „a‟ uses a result value of a

function „b,‟ „b‟ must execute before „a.‟ if, however,

developers assign execution order id of „a‟ before „b,‟ it

is incorrect order and makes critical errors. <Fig.2>

shows a diagram in this example. Using input port

without connection is also a problem because a function

which has useless input may not operate correctly.

Eliminating incorrect function/variable uses Using

incorrect functions and variables are also problems. An

incorrect function/variable makes incorrect results or

meaningless values.

Guidelines in reliability about variables and functions

include rules about correctness of types about

function/variable. Guidelines also include rules are

about „initialization of variables,‟ „do not use built-in

function type which is different to the standard.‟ For

example, according to a standard, ADD function can

use INT and REAL types but if developers use other

type, it may makes problems. And if developers use

variable without initialization, result of this operation

may be unexpected value. It may cause of errors or

problems

Eliminating implicit/explicit type conversion A

type conversion may make incorrect values or results,

because a type conversion changes an interpretation

method of bits in a variable. Software development for

safety critical systems needs to reduce the use of the

type conversions. There are two kinds of the

conversions, explicit type conversions and implicit type

conversions. The difference between a function type

and an input type makes an implicit type conversion.

Implicit type conversions may make unintended

result because results of conversions may not be

predictable. We strongly limit the conversions between

a type of a block and its input. We recommend using

explicit type conversion. But several kinds of

conversions make unintended results even though

developers use explicit type conversion. Rules are

conversion with between signed and unsigned, integer

and real, different bits in same type, for example INT

(4byte integer) to SINT (1byte integer), and so on. Type

conversions, which are signed and unsigned, integer

and Boolean, may change a variable‟s value because an

interpretation of bits is different each other. As a result,

software may operate in unexpected ways.

Fig 3. An example of violation about reliability rules

<Fig. 3> shows an example about violations of

reliability rules. <Fig. 3> shows an implicit type

conversion when AND_BOOL is connected input of

ADD_INT. This is connections between functions with

different types. It has problems in implicit type

Transactions of the Korean Nuclear Society Autumn Meeting

Pyeongchang, Korea, October 30-31, 2014

conversion rules. And connections with two ADD_INT

have execution order but its number is not correct.

Because ADD_INT (2) executes later than ADD_INT

(3). So this kind of ordering may be cause of problems.

This reverse order should be changed. Programs, which

are modified by applying guidelines, are shown in <Fig.

4>. It uses a type conversion function directly between

ADD_INT and AND_BOOL and attaches correct

execution order. However <Fig. 4> still has some

problems about type conversion. Even though

developers use an explicit type conversion function

between a BOOL type and an INT type, it can make

problems. So type conversion is not recommended for

software of safety critical systems.

Fig 3. An example of modified in <Fig. 4>

3.2 Guidelines for maintainability

Guidelines for maintainability have two categories:

- Eliminating illegible diagram

- Eliminating illegible variable uses

An illegible diagram is difficult to modify and interpret

it. So it may provide developers an opportunity of

misinterpreting. Developers are able to make errors by a

misinterpreting diagram and these errors make failures

of software in systems. Therefore developers should

eliminate an illegible diagram in software of safety

critical systems. Rules in this chapter consist of

reducing illegible in diagram.

Eliminating illegible diagrams The contents of this

category are rules about drawing legible diagrams.

Rules are „lines or blocks are never crossed or

overlapped each other,‟ „restricting number of blocks in

one user-defined function block,‟ and so on. Crossed

lines or overlapped blocks are difficult to interpret

diagram because it is not easy to find boundary of

blocks. And we think that too many blocks in a user-

defined function block are not easy to read also. A

function block needs to limit a number of blocks to

identify program flow easily.

Eliminating illegible variables uses The contents of

this category are rules about blocks of a variable to

identify easily. Rules are „do not use a too short name

or a too long name‟ and „using an additional identifier if

it is needed‟ and so on. A too short variable name is not

easy to confirm a purpose of the variable and it

decreases readability also. Using an additional identifier

is a rule for identifying a variable easily. Feedback

variables without an identifier sometimes make

confusion of distinction between feedback variables and

other variables. Feedback variables are which reuse by

cycle of the program. <Fig. 5> shows an example about

a feedback variable. A variable which is named counter

is output of ADD_INT and input of ADD_INT at the

cycle time. Depending on this characteristic, feedback

variables have an effect in data flow of programs. So

distinction of feedback variables is important.

Fig 5. An example about feedback variable

Fig 6. An example about violation of maintainability rule

<Fig. 6> shows an example about violations of

maintainability rules. Lines, which connect ADD_INT

and „a,‟ „b‟ each, are crossed. An overlap between two

blocks, ADD_INT and SUB_INT, are not easy to read.

Another problem in the example is too short name like

an „a,‟ and an example has a too long variable name

also. Examples of explaining above reduce readability

of FBD programs. Therefore we made rules in order to

reduce these kinds of programming problems.

<Fig. 7> shows a modified figure by applying

guidelines. We change variable names, which are „a‟

and „b.‟ And we remove crossed lines between

connections with variables, „a‟ and „b.‟ Overlapping

between ADD_INT and SUB_INT is removed from

diagram also. So developers may understand <Fig. 7>

easily rather than <Fig. 6>.

Fig 7. An example of modified in <Fig. 6>

Transactions of the Korean Nuclear Society Autumn Meeting

Pyeongchang, Korea, October 30-31, 2014

3.2 Classification of the rules

We classify rules according to degree of affecting the

FBD programs. Warning levels may affect a little or not,

and error levels may make critical errors. <Table 1>

shows description and an example about classification

of the rules. The warning level is an illegible variable

like a too short or a too long name, some of the explicit

type casting, such as integer to integer, and so on. These

kinds of violations are not made critical errors. And the

error level is implicit type casting, incorrect control

flow like incorrect execution ordering and so on. Error

level violations should be removed from FBD programs.

Table I: levels in guidelines

level Example

Warning
some of the explicit type casting,

illegible variable, illegible diagram,

error

Implicit type casting, incorrect

control flow, incorrect

function/variable, some of the

explicit type casting,

4. FBDChecker : An automatic rule checker for

FBD programs

We developed a CASE (Computer-Aided Software

Engineering) tool to check FBD programs for applying

our guidelines easily. It detects violations automatically

using FBD programs which are saved in a xml file.

<Fig. 8> describes structure of the tool.

Fig 8. A structure of FBDChecker

FBDChecker consists of RuleChecker and Result-

Mager. And an input and an output of FBDChecker is a

file. Input file format of the tool is xml which is stored

FBD programs by FBD xml schema of PLCopen TC6.

PLCopen TC6 defined XML formats which is de facto

standard for an interface between software tools using

the IEC 61131-3 standard [12]. We also accept xml

format for output because xml is a file which is used

generally for sharing data. The file, which is used in

output, format contains a data about information of a

diagram and results of checking. FBDChecker reads a

file, which is stored FBD programs, for using FBD

programs to find violations. Next, RuleChecker finds

violations and ResultManager combines the result and

writes to file using JAXB library [13]. File format about

result xml contains pou name, function position and

name, localId, violation data, level.

Fig 9. A screen dump of FBDChecker

<Fig 9> describes a screen of FBDChecker. It has an

open button, a start check button, and a show button. A

user clicks the open button in order to open a file and

click start check to start finding violations. Show button

is pressed, violation data appears to textbox in the

bottom of the tool. Scroll boxes which named pou,

grade and kind locate in the left side for data filtering.

Pou means each function block name in FBD programs

and grade means levels explain above—warning and

error—, kind means blocks and variables. Blocks are

function in FBD programs and variables are variables

which are defined in FBD programs. FBDChecker

shows filtered data which is selected by scroll box. In

right side, FBDChecker shows the coverage about how

much satisfy our guidelines.

5. Case study

We applied the proposed guidelines to a part of

FIX_RISING which mentioned by [9] in the Bistable

Processor (BP) program, which is a preliminary version

of the Advanced Power Reactor‟s (ARP-1400) reactor

protection system (RPS) by using FBDChecker.

Thorough FBDChecker, finds 16 kinds of violations.

Following figures describe violations that FBDChecker

finds. <Fig. 9> and <Fig. 11> shows the results of

FBDChecker. FBDChecker shows the list about

function that violations are existed in the left side, and

in the right side, shows the list about violations which

are existed in the function.

Transactions of the Korean Nuclear Society Autumn Meeting

Pyeongchang, Korea, October 30-31, 2014

Fig 10. Examples of result about block in FIX_RISING

Fig 11. A diagram example of <Fig. 8>

Figure 12. Examples of result about variable in FIX_RISING

Figure 13. An example of coverage in FIX_RISING

<Fig. 10> shows violations about „collision (overlap)

block,‟ „too near block,‟ „crossed line.‟ <Fig. 11> shows

a part of diagram of FIX_RISING about <Fig. 10> [14].

The SEL_INT block overlaps the TSP_CONT variable.

And line crosses the TSP block. Violations about using

feedback variables without initialization and using too

short name PTSP appears in <Fig. 12>. <Fig.13> shows

an example of coverage in FIX_RISING. And it shows a

coverage about each pou. FBDChecker finds violations

which are a feedback variable without initialization,

recommend attaching a feedback identifier, avoid using

a short variable.

6. Conclusion and future work

In this paper, we suggested refined and new

guidelines for development software in safety critical

systems. And we proposed CASE tool for finding

violations of rules. We expect that FBDChecker can

help software development using the FBD language in

safety critical systems. But several limits in rules about

timer and some function in standard are existed.

We are now planning to evolve the tool,

FBDChecker. It does not show a diagram directly inside

the tool about violations. It is possible to check only the

text to show violation. And we modify FBDChecker for

expansion about rules later. Because of we modify

source code directly to add new rules in FBDChecker.

So it is difficult to add new rule. We reflect these kinds

of plan and research more than it in the future.

Acknowledgements

This research was supported, in part, by a grant from

the Korea Ministry of Science, ICT and Future Planning,

under the development of the integrated framework of

I&C dependability assessment, monitoring, and

response for nuclear facilities. It was also supported, in

part, by a grant from the Korea Atomic Energy

Research Institute, under the development of the core

software technologies of the integrated development

environment for FPGA-based controllers.

REFERENCES

[1] D. Bonn, A. Canning, “SEMSPLC Guidelines for the

Development of Safe PLC Application Software”, IEEE

Computing & Control Engineering Journal, June 1996, pp

141-143.

[2] Functional safety of electrical/electronic/programmable

electronic safety-related systems: Part 3. Software

requirements (IEC 61508-3), International Electrotechnical

Commission, 1997.

[3] misra c : Guidelines for the Use of the C Language in

Critical Systems, The Motor Industry Software Reliability

Association, Oct 2004

[4] Guidelines for the Use of the C++ Language in Critical

Systems, The Motor Industry Software Reliability Association,

Jun 2008.

[5] NUREG/CR-6463 : Review guidelines on Software

Languages for Use in Nuclear Power Plant Safety Systems,

United States Nuclear Regulatory Commission, 1997

[6] NUREG GUIDELINE FOR FBD, IEEE

“ http://grouper.ieee.org/groups/plv/HISTORICAL-

LINKS/NUREG%20CR6463,%20Rev.%201/LANGUAGE/C

H11FBD.HTM”

[7] IEC 61131-3 international standard part3 programming

language

[8] D. Lee, J. Yoo, J. Lee, Guidelines for the Use of Function

Block Diagram in Reactor Protection Systems

[9] Mario de Sousa, Restricting IEC 61131-3 programming

languages for use on high integrity applications, emerging

Technologies and Factory Automation 2008 p. 361-368 IEEE

international conference on, 2008

[10] PLCopen, “Plcopen - technical committee 5: Safety

software,” Online publication, Jan 2006,

http://www.plcopen.org/.

[11] software Considerations in Airborne Systems and Equip-

ment Certification, RTCA-DO-178, Radio Technical

Commission for Aeronautics, 1992.

[12] Plcopen, “http://www.plcopen.org/pages/tc6_xml/xml_-

intro/” xml schema

[13] jaxb, JAXB Reference implementation,

https://jaxb.java.net/

[14] D. Lee, E. Kim, Y. Seo, J. Yoo, FBDEditor : Design

program of FBD for developing Reactor Instrumentation and

Control system, Korea Conference on Software Engineering,

P.315-318 , 2014.

